Интерфейс

Примечания

  1. Р 50.1.041-2002: Информационные технологии. Руководство по проектированию профилей среды открытой системы (СОС) организации-пользователя
  2. СТО НОСТРОЙ 2.15.9-2011: Инженерные сети зданий и сооружений внутренние. Устройство систем распределенного управления. Монтаж, испытания и наладка. Требования, правила и методы контроля
  3. Першиков В. И., Савинков В. М. Толковый словарь по информатике / Рецензенты: канд. физ.-мат. наук А. С. Марков и д-р физ.-мат. наук И. В. Поттосин. — М.: Финансы и статистика, 1991. — 543 с. — 50 000 экз. — ISBN 5-279-00367-0.
  4. ОСТ 45.68-96 Классификация и условные обозначения стыков (интерфейсов) цифровых станций местных телефонных сетей
  5. Мячев А. А. Интерфейсы средств вычислительной техники. Энциклопедический справочник. М.: Радио и связь, 1993. С. 4.

Что внутри системника?

Итак, имеем в чистом виде материнскую плату со множеством разъемов которые и являются внутренним интерфейсом. К ним относятся:


  • сокет для установки процессора;
  • обычно четыре гнезда для монтажа оперативной DDR памяти только определенного 2, 3 или 4-го поколения;
  • шина AGP, раньше используемая исключительно для видеокарты;
  • универсальная шина PCI Express для подключения дополнительных модулей (в т. ч. графических и звуковых адаптеров). На одной плате может быть несколько внешне аналогичных PCI разъемов типов 1.0, 2.0, 3.0 и 4.0, отличающихся скоростью передачи данных.
  • для подключения устройств хранения информации раньше использовался шлейф с универсальной шиной IDE. Сейчас же жесткие диски, DVD приводы коммутируются посредством разъема SATA и дополнительного канала питания;

Кстати, вспомним о энергоснабжении системы. Блок питания, имеет внешний интерфейс для подключения к электросети и внутренние вилки, отличающиеся конфигурацией и подаваемым напряжением: ATX для материнской платы, 4-контактный для CPU, 6-и и 8-и пиновй для PCI Express, 15-и контактный для SATA, универсальный «Molex». Вентиляторы можно подключать к контактным гнездам, размещенным непосредственно на системной плате.

Упражнение 2: Создание внешнего интерфейса

Для продолжения процесса создания интерфейса необходимо создать контейнер Java, в который будут помещены другие требуемые элементы графического интерфейса. В этом действии контейнер будет создан с помощью элемента . Контейнер будет помещен в новый пакет, который будет отображаться в узле «Source Packages».

Создание контейнера JFrame

  1. В окне ‘Проекты’ щелкните правой кнопкой мыши узел NumberAddition и выберите Создать > Другие.
  2. В диалоговом окне создания файла выберите категорию Swing GUI Forms и тип файла JFrame Form. Нажмите кнопку «Далее».
  3. Введите NumberAdditionUI в качестве имени класса.
  4. Выберите пакет .
  5. Нажмите кнопку ‘Готово’.

Среда IDE создает форму и класс в приложении и открывает форму в GUI Builder. Пакет заменяет собой пакет по умолчанию.

Добавление элементов: создание внешнего интерфейса

Далее с помощью окна «Palette» внешний интерфейс приложения заполняется панелью JPanel. После этого добавляются три элемента JLabel (текстовые подписи), три элемента JTextField (текстовые поля) и три элемента JButton (кнопки). Если до этого работа с конструктором графического интерфейса пользователя не выполнялась сведения о размещения компонентов см. в разделе Разработка графического пользовательского интерфейса Swing в IDE NetBeans.

После перетаскивания и размещения указанных выше элементов элемент JFrame должен выглядеть так, как показано на рисунке ниже.

Если в правом верхнем углу среды IDE отсутствует окно Palette («Палитра»), выберите Window («Окно») > Palette («Палитра»).

  1. Для начала выберите панель из категории Swing Containers («Контейнеры Swing») в палитре и перетащите ее на JFrame.
  2. Панель JPanel будет выделена. Перейдите к окну «Properties» и нажмите кнопку с многоточием (…) рядом с полем «Border» для выбора стиля границы.
  3. В диалоговом окне «Border» выберите «TitledBorder» из списка и введите в поле «Title». Для сохранения изменений и закрытия диалогового окна нажмите кнопку «OK».
  4. Теперь на экране должен отображаться пустой элемент «JFrame» с заголовком «Number Addition», как показано на рисунке. Согласно рисунку добавьте к нему три метки JLabel, три текстовых поля JTextField и три кнопки JButton.

Переименование элементов

На этом этапе будет выполнено переименование элементов, которые были добавлены к элементу JFrame.

  1. Дважды щелкните и измените ntrcn (свойство «text») на .
  2. Дважды щелкните и измените текст на .
  3. Дважды щелкните и измените текст на .
  4. Удалите стандартный текст из . Отображаемый текст можно преобразовать в редактируемый. Для этого щелкните правой кнопкой мыши текстовое поле и выберите ‘Редактировать текст’ во всплывающем меню. При этом может потребоваться восстановить первоначальный размер поля . Повторите это действие для полей и .
  5. Измените отображаемый текст на . (Для изменения текста кнопки щелкните кнопку правой кнопкой мыши и выберите «Edit Text». В качестве альтернативы можно щелкнуть кнопку, выдержать паузу и щелкнуть еще раз.)
  6. Измените отображаемый текст на .
  7. Измените отображаемый текст на .

Теперь готовый графический интерфейс должен выглядеть так, как показано на рисунке ниже:

Количественный анализ интерфейса

    Многие количественные и эвристические методы используются для анализа и изучения интерфейсов. Эти методы составляют значительную часть содержания большинства книг, посвященных этой теме, включая и те, которые указаны в библиографическом списке за такими авторами, как Шнейдерман (Shneiderman), Норман (Norman) и Мэйхью (Mayhew). Например, с помощью пассивного наблюдения за тестированием нового интерфейса с участием нескольких добровольцев опытный разработчик интерфейсов может узнать столько же ценной информации, сколько можно получить с помощью любого метода количественного анализа. Здесь я хочу сосредоточиться на количественных методах не для того, чтобы принизить значение качественных методов, но скорее для того, чтобы найти между ними баланс и показать ценность численных и эмпирических методов, которые не являются широко известными. Количественные методы часто могут свести спорные вопросы к простым вычислениям. Еще одним, более важным преимуществом этих методов является то, что они помогают нам понять важнейшие аспекты взаимодействия человека с машиной.

    Одним из лучших подходов к количественному анализу моделей интерфейсов является классическая модель GOMS — «правила для целей, объектов, методов и выделения» (the model of goals, objects, methods, and selection rules), которая впервые привлекла к себе внимание в 80-х годах (Card, Moran and Newell, 1983). Моделирование GOMS позволяет предсказать, сколько времени потребуется опытному пользователю на выполнение конкретной операции при использовании данной модели интерфейса

После обсуждения модели GOMS мы рассмотрим количественные методы оценки производительности интерфейсов, скорости движения курсора и времени, необходимого для принятия решения.

Харизматичный дизайн или использование эмпатии для вовлечения пользователя

Все больше нарастает тенденция компаний и сервисов иметь в своем вооружении не просто функциональный сайт, выполняющий задачи, а эстетически приятный глазу продукт, имеющий приятный дизайн. Не так давно сайт с качественно проработанным UI/UX был уже преимуществом и выделялся среди конкурентной массы компаний. На данный момент таким обзавелись практически все, меняется только оформление, которым уже тоже достаточно сложно удивить пользователя. Хотя этот аспект затрагивает больше область маркетинга чем дизайна, пробиться к сознанию пользователя становится все сложней, поэтому данная область обязательна к изучению еще и дизайнерами.

Основы пользовательского интерфейса

Задачи пользователя компьютерной программы заключаются в манипуляции с объектом и его свойствами – данными. В отличие от операторов, пользователи выполняют профессиональную задачу с иной психологической структурой действий, другими целями, объектом труда и операциями, ресурсами, иной социальной средой взаимодействия. Разнообразие ситуаций, в которых могут работать интерактивные программные системы, затрудняет для разработчика выбор целей, которым необходимо следовать для создания удачного интерфейса. Различные исследователи и организации-разработчики программного обеспечения приводят разные рекомендации, но основные из них следующие:

Простота Эта рекомендация восходит к правилу бритвы Оккама: лучшее объяснение – самое простое. Действительно, простой интерфейс позволяет пользователю быстрее адаптироваться, уменьшает вероятность его ошибок, да и разработчику проще отладить такой интерфейс. Интерактивная система хороша, если интерфейс интуитивно понятен, то есть соответствует предметной области и стилю мышления пользователя. Интерфейс должен быть легким для освоения и не создавать перед пользователем преграду, которую он должен будет преодолеть, чтобы приступить к работе.

Дружественность( юзабилити) Интерфейс дружественный, если пользователь, работая с ним, не испытывает дискомфорта. У пользователя должно складываться впечатление, что он управляет процессом. Кроме того, графический интерфейс должен быть построен в соответствии с эргономическими требованиями: цвета экрана и элементов, их размер, композиция. Важен темп выполнения операций, который должен соответствовать естественному темпу человека, среднее время отклика и его дисперсия. Сообщения должны быть корректными по форме, точными и информативными, совершенно недопустимы безграмотные тексты. Пользователь должен всегда знать, на какой стадии процесса он находится.

Естественность интерфейса Естественный интерфейс — такой, который не вынуждает пользователя суще¬ственно изменять привычные для него способы решения задачи. Это, в частности, означает, что сообщения и результаты, выдаваемые приложением, не должны требовать дополнительных пояснений.

Функциональность Хотя вычислительная система и бывает в некоторых организациях в роли большой игрушки, но чаще её пытаются использовать для дела, особенно в том случае, когда выполнение работы иными средствами менее эффективно. Функциональность системы обозначает наличие значительной эффективности в выполнении операций, что делает её использование рентабельным. Интерфейс должен отражать ее функциональность и давать возможность успешной работы пользователям различной квалификации.

Умеренная цена Речь идет о производственных системах. Понятно, что система, имеющая слишком дорогостоящий интерфейс, но недостаточную функциональность, будет, возможно, куплена, но пользователь останется ею недоволен: срок окупаемости системы во многом зависит от функциональности. С другой стороны, экономия на интерфейсе – очень недальновидная политика. Некачественный интерфейс создаёт у пользователей плохое мнение о системе и может вообще привести к отказу от её использования.

Стадии проектирования

Стадии проектирования, как и вообще весь процесс создания интерфейса, очень похожи на стадии в процессе разработки информационной системы в целом. 1. Анализ деятельности пользователей. Это предпроектная стадия, на которой определяются задачи, процедуры, уточняется характер производства, контингент пользователей и т.п. 2. Формализация результатов анализа в виде схем и диаграмм бизнес-процессов и сценариев выполнения каждой задачи. 3. Проектирование интерфейса для обеспечения каждого сценария и процесса. Синтез решения в виде прототипа интерфейса. 4. Тестирование с пользователями прототипа или готового интерфейса. Синтез решения (рисование экранных форм) часто занимает гораздо меньшее время, нежели этап анализа. Прототип интерфейса – это результат синтеза полученных знаний о требованиях, ограничениях, среде, задачах и пользователях. Можно встретить и другой, но похожий, подход, где процесс проектирования разбивается на 6 этапов. На каждом из них используются свои методы, а результаты их становятся отправной точкой для других методов. Этапы следующие:

  • планирование и оценка;
  • составление требований к проекту;
  • дизайн и проектирование;
  • реализация и программирование;
  • тестирование и оценка;
  • выпуск.

Интерфейсы и полиморфизм

Java-интерфейсы – это способ достижения полиморфизма. Полиморфизм – это концепция, которая требует некоторой практики и мысли, чтобы овладеть ею. По сути, полиморфизм означает, что экземпляр класса(объекта) можно использовать так, как если бы он был разных типов. Здесь тип означает либо класс, либо интерфейс.

Посмотрите на эту простую диаграмму классов:

Приведенные выше классы являются частями модели, представляющей различные типы транспортных средств и водителей, с полями и методами. Это ответственность этих классов – моделировать эти сущности из реальной жизни.

Теперь представьте, что вам нужно иметь возможность хранить эти объекты в базе данных, а также сериализовать их в XML, JSON или другие форматы. Вы хотите, чтобы это было реализовано с использованием одного метода для каждой операции, доступного для каждого объекта Car, Truck или Vehicle. Метод store(), метод serializeToXML() и метод serializeToJSON().

Пожалуйста, забудьте на некоторое время, что реализация этой функциональности как методов непосредственно на объектах может привести к грязной иерархии классов. Просто представьте, что именно так вы хотите выполнить операции.


Где в приведенной выше схеме вы бы поместили эти три метода, чтобы они были доступны для всех классов?

Одним из способов решения этой проблемы было бы создание общего суперкласса для класса Vehicle и Driver, который имеет методы хранения и сериализации. Однако это приведет к концептуальному беспорядку. Иерархия классов больше не будет моделировать транспортные средства и водителей, но также будет привязана к механизмам хранения и сериализации, используемым в вашем приложении.

Лучшим решением было бы создать некоторые интерфейсы с включенными методами хранения и сериализации и позволить классам реализовать эти интерфейсы. Вот примеры таких интерфейсов:

public interface Storable {

    public void store();
}
public interface Serializable {
    public void serializeToXML(Writer writer);
    public void serializeToJSON(Writer writer);
}

Когда каждый класс реализует эти два интерфейса и их методы, вы можете получить доступ к методам этих интерфейсов, приведя объекты к экземплярам типов интерфейса. Вам не нужно точно знать, к какому классу относится данный объект, если вы знаете, какой интерфейс он реализует.

Car car = new Car();

Storable storable =(Storable) car;
storable.store();

Serializable serializable =(Serializable) car;
serializable.serializeToXML(new FileWriter("car.xml"));
serializable.serializeToJSON(new FileWriter("car.json"));

Как вы уже, наверное, можете себе представить, интерфейсы предоставляют более понятный способ реализации сквозных функций в классах, чем наследование.

Программный и графический интерфейс

Но отдельно я бы хотел остановиться на мониторе, а точнее на графическом интерфейсе компьютера (GUI) и таком важном компоненте как программное обеспечение. Два этих понятия тесно связаны между собой и во многом определяют эффективность и удобство работы пользователя с ПК

Начнем с того что при включении ПК без установленной системы мы имеем возможность зайти в меню настроек BIOS, где нас встречает простенький интерфейс программного взаимодействия с отдельными элементами ПК. Сейчас на смену БИОСу пришел UEFI, предлагающий более широкие возможности.

Вторая стадия работы с компьютером – установка операционной системы, которую выбирают в зависимости от конфигурации ПК, поставленных целей и личных предпочтений.

Долгое время безальтернативным вариантом был MS-DOC c оболочкой Norton Commander. Но сейчас абсолютным лидером является Windows 7, 8 и 10-ой версий. На слабенькие машины ставят стабильно работающую XP или экспериментируют с Linux. Некоторые сознательно предпочитают Unix-подобные системы именно благодаря разнообразию их интерфейсов. Обладатели техники от Apple работают с проприетарной MacOS.

И Мак, и Виндовс, и Линукс максимально упрощают работу с настройками и подменю, а так же делают удобным обращение к различным программам и утилитам. Если вы еще не оценили преимуществ такого интерфейса, то попробуйте решать такие задачи посредством командной строки.

И на поверхности программного интерфейса лежат все остальные приложения, браузеры, медиаплееры, офисные пакеты, игры, антивирусы, всевозможные утилиты. Так же служебное и специализированное ПО, которые мы устанавливаем на компьютер для непосредственной работы с ним.

Описывать различия в используемых здесь интерфейсах можно до бесконечности. Но вы сами для себя, наверное, уже решили, чем удобнее пользоваться Chrome или Firefox, ESET или Avira, LibreOffice или Microsoft Office и так далее. И здесь все определяет именно интерфейс, как пользовательский, так и внутренний, задействующий память и процессор.

Вот видите, мои дорогие друзья, мы вроде как говорили об интерфейсах, а фактически детально разобрались, как работает компьютер. Думаю, это только пойдет нам на пользу. Теперь, в совершенстве владея понятием компьютерного интерфейса, вы можете смело проводить аналогии с другими устройствами, будь то бытовые электроприборы, мобильные или мультимедийные гаджеты.

А мне остается попрощаться с вами и пожелать всяческих успехов, а так же эффективных и удобных интерфейсов.

Вот видите, мои дорогие друзья, мы вроде как говорили об интерфейсах. Фактически детально разобрались, как работает компьютер. Думаю, это только пойдет нам на пользу. Теперь, в совершенстве владея понятием компьютерного интерфейса, вы можете смело проводить аналогии с другими устройствами, будь то бытовые электроприборы, мобильные или мультимедийные гаджеты.

VR-нейроинтерфейс для людей с Альцгеймером

Из песочницы

Представьте, что вы играете в увлекательную компьютерную игру, набираете полезные скиллы, проходите новые уровни, изучаете карты игры, получаете награды, а на следующий день заходите в игру снова, но вот часть скиллов потеряна, уровни нужно проходить заново, карты уже изменились и часть наград отобрали. Вы восстанавливаете утраченные достижения, продвигаетесь немного дальше, а на следующий день снова откатываетесь назад. И так каждый раз. И более того, постепенно ваши откаты превышают продвижение вперед — в конце концов вы уже находитесь в самом начале, не помните, что проходили, и даже не знаете, как играть. Примерно так происходит реальная жизнь у людей с диагнозом «Болезнь Альцгеймера» (БА).

Вкратце про болезнь Альцгеймера

Это нейродегенеративное заболевание, характеризующееся когнитивными нарушениями, развитием деменции, социальной дезадаптацией, сокращением продолжительности жизни. Патофизиологические изменения, характерные для БА, начинаются за годы и даже за десятилетия до клинического подтверждения заболевания. Кадр из фильма «Дневник памяти» Болезни в большей степени подвержены люди пожилого возраста, хотя в редких случаях она может проявляться и сильно раньше. Причем чем дальше за 60, тем больше вероятность развития заболевания. Наверно, поэтому существует распространенное мнение, что Альцгеймер придет к каждому, просто не каждый до него доживет.

Типы пользовательских интерфейсов. Графический, текстовый и другие

Текстовый интерфейс — это способ общения человека с компьютером с помощью печати команд. Например, в операционной системе MS-DOS интерфейс был текстовым — пользователь набирал на клавиатуре нужные команды, а машина их выполняла.

Текстовый интерфейс MS-DOS — командная строка

Проблема текстового интерфейса в том, что пользователь должен знать необходимые команды и каждый раз вручную набирать их без ошибок. Частично от этой трудности избавили оболочки для MS-DOS — например, Norton Commander.

Norton Commander — файловый менеджер для MS-DOS. В нем можно не только набирать команды на клавиатуре, но работать с файлами с помощью сочетаний клавиш.

Вскоре появились и графические интерфейсы, где пользователь взаимодействует с визуальными объектами: кнопками, значками, картинками на экране. Операционная система Windows использует графический интерфейс: пользователь кликает мышкой по иконкам — пиктограммам, изображающим файлы и программы.

Графический интерфейс Windows 3.11

Материальный интерфейс — это способ взаимодействия с компьютером с помощью осязаемых конструкций. Например, компьютерная мышка или джойстик — это материальный интерфейс. Двигая мышку по столу, мы одновременно перемещаем стрелку курсора по экрану.


Материальный интерфейс — компьютерная мышь. Фото: Depositphotos

Голосовой интерфейс — это управление с помощью речевых команд. Человеческий голос сегодня умеют понимать даже мобильные телефоны. Например, Siri от Apple, голосовой помощник Google, «Алиса» от «Яндекса»

Голосовой интерфейс — Siri от Apple. Siri — это сокращение от Speech Interpretation and Recognition Interface (интерфейс распознавания и интерпретации речи). Фото: Depositphotos

Жестовый интерфейс позволяет отдавать команды, делая жесты пальцем, рукой, компьютерной мышью, специальным контроллером и т.п.

Жестовый интерфейс — игровая приставка Nintendo Wii, контроллеры которой реагируют на движения пользователя.

Тактильный интерфейс позволяет пользователю испытывать осязательные ощущения (нажим, вибрацию и т.п.) и взаимодействовать с компьютером с их помощью.

Перчатки виртуальной реальности — пример тактильного интерфейса. Фото: NASA

Нейронный интерфейс позволяет передавать команды с помощью вживленных в мозг электродов. Двунаправленные нейронные интерфейсы могут не только принимать информацию от мозга, но и отправлять ее в мозг — например, через сетчатку глаза.Йенс Науманн — слепой, способный «видеть» с помощью нейронного зрительного протеза. Камера улавливает изображение и направляет обработанную версию в зрительную кору головного мозга через электроды.

Киану Ривз в фильме «Матрица» (1999). Герои пользуются нейроинтерфейсом, чтобы попасть в виртуальную реальность — Матрицу.

Киберспейс — интерфейс в виде виртуальной реальности. Кадр из фантастического фильма «Джонни Мнемоник» (1995)

Понятие интерфейса пользователя

Интерфейс — совокупность технических, программных и методических (протоколов, правил, соглашений) средств сопряжения в вычислительной системе пользователей с устройствами и программами, а также устройств с другими устройствами и программами.

Интерфейс — в широком смысле слова, это способ (стандарт) взаимодействия между объектами. Интерфейс в техническом смысле слова задаёт параметры, процедуры и характеристики взаимодействия объектов. Различают:

Интерфейс пользователя — набор методов взаимодействия компьютерной программы и пользователя этой программы.

Программный интерфейс — набор методов для взаимодействия между программами.

Физический интерфейс — способ взаимодействия физических устройств. Чаще всего речь идёт о компьютерных портах.

Пользовательский интерфейс — это совокупность программных и аппаратных средств, обеспечивающих взаимодействие пользователя с компьютером. Основу такого взаимодействия составляют диалоги. Под диалогом в данном случае понимают регламентированный обмен информацией между человеком и компьютером, осуществляемый в реальном масштабе времени и направленный на совместное решение конкретной задачи. Каждый диалог состоит из отдельных процессов ввода / вывода, которые физически обеспечивают связь пользователя и компьютера. Обмен информацией осуществляется передачей сообщения.

Рис.1. Взаимодействие пользователя с компьютером

В основном пользователь генерирует сообщения следующих типов:

запрос информации

запрос помощи

запрос операции или функции

ввод или изменение информации

В ответ пользователь получает подсказки или справки; информационные сообщения, требующие ответа; приказы, требующие действия; сообщения об ошибках и другую информацию.

Интерфейс пользователя компьютерного приложения включает:


средства отображения информации, отображаемую информацию, форматы и коды;

командные режимы, язык «пользователь — интерфейс»;

устройства и технологии ввода данных;

диалоги, взаимодействие и транзакции между пользователем и компьютером, обратную связь с пользователем;

поддержку принятия решений в конкретной предметной области;

порядок использования программы и документацию на неё.

Пользовательский интерфейс (ПИ) часто понимают только как внешний вид программы. Однако на деле пользователь воспринимает через него всю программу в целом, а значит, такое понимание является слишком узким. В действительности ПИ объединяет в себе все элементы и компоненты программы, которые способны оказывать влияние на взаимодействие пользователя с программным обеспечением (ПО).

Это не только экран, который видит пользователь. К этим элементам относятся:

набор задач пользователя, которые он решает при помощи системы;

используемая системой метафора (например, рабочий стол в MS Windows);

элементы управления системой;

навигация между блоками системы;

визуальный (и не только) дизайн экранов программы;

средства отображения информации, отображаемая информация и форматы;

устройства и технологии ввода данных;

диалоги, взаимодействие и транзакции между пользователем и компьютером;

обратная связь с пользователем;

поддержка принятия решений в конкретной предметной области;

порядок использования программы и документация на нее.

Безопасность

Одним из основных направлений исследований в области обеспечения безопасности пользовательских интерфейсов, и, в частности, визуальных интерфейсов пользователя, является разработка моделей информационной безопасности при условии комплексного учёта информационных, функциональных, психофизиологических и экологических аспектов безопасности. Это связано, прежде всего, с включением информационного фактора в состав факторов среды систем человек-компьютер и информационным характером почти всех происходящих в области распространения ИП процессов. Наименее разработанным областям проблематики защиты информации в системе человек-компьютер (СЧК) соответствуют такие угрозы, как:

  • искажение воспринимаемой пользователем информации за счет её зашумления источниками среды на рабочем месте пользователя;
  • потеря или искажение воспринимаемой пользователем информации из-за физической, семантической или синтаксической несогласованности её представления пользователю;
  • искажение представлений пользователя о реальном состоянии объекта управления за счет скрытых информационных воздействий и неадекватное принятие им решений в процессе решения задач в рамках СЧК.

2.1 Командный интерфейс

Пакетная технология. Исторически этот вид технологии появился первым. Она существовала уже на релейных машинах Зюса и Цюзе (Германия, 1937 год). Идея ее проста: на вход компьютера подается последовательность символов, в которых по определенным правилам указывается последовательность запущенных на выполнение программ. После выполнения очередной программы запускается следующая и т.д. Машина по определенным правилам находит для себя команды и данные. В качестве этой последовательности может выступать, например, перфолента, стопка перфокарт, последовательность нажатия клавиш электрической пишущей машинки (типа CONSUL). Машина также выдает свои сообщения на перфоратор, алфавитно-цифровое печатающее устройство (АЦПУ), ленту пишущей машинки. Такая машина представляет собой «черный ящик» (точнее «белый шкаф»), в который постоянно подается информация и которая также постоянно «информирует» мир о своем состоянии (см. рисунок 1) Человек здесь имеет малое влияние на работу машины — он может лишь приостановить работу машины, сменить программу и вновь запустить ЭВМ. Впоследствии, когда машины стали помощнее и могли обслуживать сразу нескольких пользователей, вечное ожидание пользователей типа: «Я послал данные машине. Жду, что она ответит. И ответит ли вообще? » — стало, мягко говоря, надоедать. К тому же вычислительные центры, вслед за газетами, стали вторым крупным «производителем» макулатуры. Поэтому с появлением алфавитно-цифровых дисплеев началась эра по-настоящему пользовательской технологии — командной строки.

Рис.2. Вид большой ЭВМ серии ЕС ЭВМ

Технология командной строки. При этой технологии в качестве единственного способа ввода информации от человека к компьютеру служит клавиатура, а компьютер выводит информацию человеку с помощью алфавитно-цифрового дисплея (монитора). Эту комбинацию (монитор + клавиатура) стали называть терминалом, или консолью. Команды набираются в командной строке. Командная строка представляет собой символ приглашения и мигающий прямоугольник — курсор. При нажатии клавиши на месте курсора появляются символы, а сам курсор смещается вправо. Это очень похоже на набор команды на пишущей машинке. Однако, в отличие от нее, буквы отображаются на дисплее, а не на бумаге, и неправильно набранный символ можно стереть. Команда заканчивается нажатием клавиши Enter (или Return) После этого осуществляется переход в начало следующей строки. Именно с этой позиции компьютер выдает на монитор результаты своей работы. Затем процесс повторяется. Технология командной строки уже работала на монохромных алфавитно-цифровых дисплеях. Поскольку вводить позволялось только буквы, цифры и знаки препинания, то технические характеристики дисплея были не существенны. В качестве монитора можно было использовать телевизионный приемник и даже трубку осциллографа.

Панель инструментов

Панель инструментов (Toolbar) — элемент графического интерфейса пользователя, предназначенный для размещения на нём нескольких других элементов. Обычно представляет собой горизонтальный или вертикальный прямоугольник, в котором могут быть относительно постоянно размещены такие элементы, как:

  • кнопка;
  • меню;
  • поле с текстом или изображением;
  • выпадающий список.

Как правило это элементы, вызывающие часто используемые функции, также доступные из меню окна (которое тоже может находиться на панели). Функции элементов могут обозначаться значками и/или текстом. Если элементы не умещаются на панели, то могут быть добавлены кнопки прокрутки, или меню с этими элементами. Состав и порядок элементов панели можно изменять в опциях приложения. 


С этим читают