Расшифровка расчетного счета, значение цифр, примеры

код I

В Викиданных есть лексема код (L144838).

Морфологические и синтаксические свойства

падеж ед. ч. мн. ч.
Им. код ко́ды
Р. ко́да ко́дов
Д. ко́ду ко́дам
В. код ко́ды
Тв. ко́дом ко́дами
Пр. ко́де ко́дах

код

Существительное, неодушевлённое, мужской род, 2-е склонение (тип склонения 1a по классификации А. А. Зализняка).

Корень: -код-.

Семантические свойства

Значение

  1. система знаков, предназначенная для передачи информации ◆ Двоичный код. ◆ Телеграфный код. ◆ Штриховой код.
  2. прост. то же, что шифр; система знаков для секретного письма, хранения секретной информации ◆ Расшифровка этого кода была очень трудной задачей.
  3. секретный набор букв и цифр, позволяющий открыть какое-либо устройство или получить доступ к какой-либо информации ◆ Замок с шестизначным кодом. ◆ Хакеры взломали код.
  4. комп. часть программы, непосредственно исполняемая процессором или интерпретатором (в отличие от данных) ◆ Код исполняется. ◆ Сегмент кода.
  5. комп. то же, что исходный текст; текст программы на каком-либо языке программирования ◆ Писать код. ◆ Некрасивый код.

Гипонимы

  1. знак, символ, кодон; штрих-код
  2. знак, символ
  3. знак, символ, пароль, трипкод

Родственные слова

Ближайшее родство
  • существительные: кодер, кодирование, декодирование, штрих-код, кодировщик, кодировщица; квазикод, псевдокод, дресс-код
  • прилагательные: кодовый
  • глаголы: кодировать
Список всех слов с корнем «код-»
  • существительные: автокод, антикодон, быдлокодер, вокодер, декодер, декодер-синтезатор, декодирование, декодировка, декодировщик, квазикод, код, кодер, кодер-декодер, кодирование, кодировка, кодировщик, кодировщица, кодогенератор, кодогенерация, кодограмма, кодозависимость, кодон, кодонабиратель, кодонезависимость, кодопреобразователь, перекодирование, перекодировка, перекодировщик, псевдокод, псевдокодирование, раскодирование, раскодировка, транскодер, транскодирование, штрихкод, штрих-код
  • прилагательные: бескодовый, кодировальный, кодово-импульсный, кодовый, кодозависимый, кодоимпульсный, кодонаборный, кодонезависимый, однокодовый, многокодовый, псевдокодовый, штрихкодовый, штрих-кодовый
  • глаголы: декодировать, декодироваться, закодировать, закодироваться, кодировать, кодироваться, перекодировать, перекодироваться, раскодировать, раскодироваться
  • причастия: декодировавший, декодированный, декодировавшийся, декодируемый, декодирующий, декодирующийся, закодировавший, закодировавшийся, закодированный, кодировавший, кодированный, кодировавшийся, кодируемый, кодирующий, кодирующийся, перекодировавший, перекодированный, перекодировавшийся, перекодируемый, перекодирующий, перекодирующийся, раскодировавший, раскодировавшийся, раскодированный, раскодируемый
  • наречия: кодозависимо, кодонезависимо

док, ДОК

Компьютерная программа

Компьютерная программа (она же приложение) — связка многочисленных строк специального текста. Он является специальным, потому что создан таким образом, чтобы машине было понятно, какие действия должны быть выполнены. Самые простые приложения содержат около ста строк кода, а в сложных и масштабных приложениях количество строк кода доходит до миллиарда.


Компьютерный код — это специальный текст, состоящий из набора пошаговых инструкций. Он не всегда содержит в себе нули и единицы, также в нём есть определённые слова и дополнительные символы. Компьютер считывает код, который сообщает ему, какие операции следует выполнить с данными. Вы знакомы с Twitter? Представьте, что Twitter — одна большая квартира, в которой расположены миллионы компьютеров, хранящих ваши твиты и вашу дату рождения (день рождения), как и твиты и даты рождения миллионов других пользователей.

Все эти твиты и даты — данные. Однако, компьютеры не обрабатывают и не перечитывают ваши твиты всё время. Даже если бы они перечитывали ваши твиты, поверьте, им было бы больно. Компьютер начинает обрабатывать и извлекать код, когда вы входите в Twitter. В этот момент он загружает с серверов те данные, которые пользователи внесли на сайт: твиты, даты рождения. Эти действия выполняются в том порядке, который прописан в коде, компьютер следует прописанным инструкциям подобно тому, как повар следует рецепту.

Если инструкции хорошо продуманы, то всё будет относительно хорошо работать. Почему относительно? Разработчикам часто приходится искать и исправлять баги (ошибки) в проектах, даже несмотря на то, что они рабочие. Ведь баг может превратиться в крупную уязвимость.

Frontend developer (Vue)

Sportmaster Lab, Липецк, до 130 000 ₽

tproger.ru

Вакансии на tproger.ru

Если в инструкциях будет какой-либо недочёт, например, опечатка или неправильное толкование данных, то приложение будет работать нестабильно или не будет запускаться вообще, показывая сообщение об ошибке. Помните, не так сложно писать код, как уметь терпеть и принимать все неудачи и провалы, с которыми вам, несомненно, придётся столкнуться. Можете взять пример в плане терпения с программистов из Индии: их код не всегда хорош, но их оптимизму могут позавидовать многие новички, которые разочаровались в себе.

Одна из самых интересных и увлекательных частей программирования — решение различных задач и проблем, которые представляют собой что-то вроде пазла или головоломки. Но это покажется интересным только тогда, когда вы разберётесь в коде и начнёте понимать его.

Текстовое значение

Кодирование и обработка текстовой информации Уже с 60-х годов прошлого столетия, компьютеры всё больше стали использовать для обработки текстовой информации. Для кодирования текстовой информации в компьютере применяется двоичное кодирование, т.е. представление текста в виде последовательности 0 и 1. Чтобы выразить текст числом, каждая буква сопоставляется с числовым значением. Смысл кодирования: одному символу принадлежит код в пределах 0−255 либо двоичный код от 00000000 до 11111111.

В мировой практике для кодирования текста при помощи байтов используются разные стандарты. Самым распространенным, но не единственным видом кодирования является код ASCII. В соответствии с этим стандартом, знаки в пределах 0−32 соответствуют операциям, а 33−127 — символам из латинского алфавита, знакам препинания и арифметики. Для национальных кодировок применяются значения 128−255. В разных национальных кодировках одному и тому же коду соответствуют различные символы. К примеру, существует 5 кодировочных таблиц для русских букв (Windows, MS-DOS, Mac, ISO, КОИ – 8). Поэтому тексты созданные в одной кодировке не будут правильно отображаться в другой.

Таблица стандартной и альтернативной частей кодов ASCII

В настоящее время для кодирования кириллицы наибольшее распространение получила кодовая таблица СР1251, которая используется в операционных системах семейства Windows фирмы Microsoft. Во всех современных кодовых таблицах, кроме таблицы стандарта Unicode, для кодирования одного символа отводится 8 двоичных разрядов (8 бит).

В конце прошлого века появился новый международный стандарт Unicode, в котором один символ представляется двухбайтовым двоичным кодом. Применение этого стандарта – продолжение разработки универсального международного стандарта, позволяющего решить проблему совместимости национальных кодировок символов. С помощью данного стандарта можно закодировать 65536 различных символов.

Программа «Hello, world!»

Программа «Hello, world!» для процессора архитектуры x86 (ОС MS DOS, вывод при помощи BIOS прерывания int 10h) выглядит следующим образом (в шестнадцатеричном представлении):

BB 11 01 B9 0D 00 B4 0E 8A 07 43 CD 10 E2 F9 CD 20 48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21

Комментарии к программе

Данная программа работает при её размещении по смещению 10016. Отдельные инструкции выделены цветом:

  • BB 11 01, B9 0D 00, B4 0E, 8A 07 — команды присвоения значений регистрам.
  • 43 — инкремент регистра BX.
  • CD 10, CD 20 — вызов программных прерываний 1016 и 2016.
  • E2 F9 — команда для организации цикла.
  • Малиновым показаны данные (строка «Hello, world!»).

Тот же код ассемблерными командами:

XXXX:0100     mov     bx, 0111h       ; поместить в bx смещение строки HW
XXXX:0103     mov     cx, 000Dh       ; поместить в cx длину строки HW
XXXX:0106     mov     ah, 0Eh         ; поместить в ah номер функции прерывания 10h
XXXX:0108     mov     al,         ; поместить в al значение ячейки памяти, адрес которой находится в bx
XXXX:010A     inc     bx              ; перейти к следующему байту строки (увеличить смещение на 1)
XXXX:010B     int     10h             ; вызов прерывания 10h
XXXX:010D     loop    0108            ; если cx≠0, то уменьшить cx на 1 и перейти по адресу 0108
XXXX:010F     int     20h             ; прерывание 20h: завершить программу
XXXX:0111 HW  db      'Hello, World!' ; строка, которую требуется напечатать

Звуки и их разрядность

Человек воспринимает звуковые волны (колебания воздуха) с помощью слуха в форме звука различных громкости и тона. Чем больше интенсивность звуковой волны, тем громче звук, чем больше частота волны, тем выше тон звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

В каждом современном компьютере предусмотрена звуковая плата, колонки, микрофон. С их помощью производится запись, сохраняются и воспроизводятся звуки — волны с определённой частотой и амплитудой. Программное обеспечение для компьютеров преобразовывает звуковые сигналы в последовательность нулей и единиц. Для этого использунтся аудиоадаптер или звуковая плата. Устройство подключается к компьютеру с целью преобразования электроколебаний звуковой частоты в двоичный код. Процесс преобразования выполняется как при вводе звуков в компьютер так и при обратном их преобразовании.

Для человека звук тем громче, чем больше амплитуда сигнала, и тем выше тон, чем больше частота сигнала. Компьютер — устройство цифровое, поэтому непрерывный звуковой сигнал должен быть преобразован в последовательность электрических импульсов (нулей и единиц). Оцифровку звука выполняет специальное устройство на звуковой плате. Называется оно аналого-цифровой преобразователь (АЦП). Обратный процесс — воспроизведение закодированного звука производится с помощью цифро-аналогового преобразователя (ЦАП).

В процессе кодирования непрерывного звукового сигнала производится его дискретизация по времени, или, как говорят, «временная дискретизация».

Глубина кодирования звука — это количество бит, используемое для кодирования различных уровней сигнала или состояний. Современные звуковые карты обеспечивают 16-битную глубину кодирования звука, и тогда общее количество различных уровней громкомти, который сможет распознать компьютер будет:N = 216= 65536.


Частота дискретизации- это количество измерений уровня звукового сигнала в единицу времени. Эта характеристика показывает качество и точность процедуры двоичного кодирования. Измеряется в герцах (Гц).

Одно измерение за одну секунду соответствует частоте 1 Гц, 1000 измерений за одну секунду — 1 килогерц (кГц). Частота дискретизации звукового сигнала может принимать значения от 8 до 196 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц — качеству звучания аудио-CD. Достаточно высокое качество звучания достигается при частоте дискретизации 44 кГц и глубины кодирования звука, равной 16 бит.

Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. В случае, когда записываются абсолютные значения амплитуды, такой формат записи называется PCM ( Pulse Code Modulation). Стандартный аудио компакт-диск (CD-DA), применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM с частотой дискретизации 44.1 кГц и разрядностью квантования 16 бит.

Подробнее о свойствах звука можно прочитать в статье Звук

Что такое QR-код: история появления и принцип использования

Аббревиатура QR происходит от английской фразы Quick Response, что можно перевести как быстрый отклик.

В европейских странах давно применяются QR-коды. У нас они стали использоваться сравнительно недавно, но сейчас активно распространяются.

Для работы с таким кодом требуется специальная программа или, точнее говоря, соответствующее приложение (и третье название того же самого – софт). Это доступно каждому, кто может выйти в интернет и скачать приложение на свой смартфон, подробнее об этом читайте .

QR-код возник в 1994 году. Тогда специалисты фирмы Denso-Wave (Япония) придумали особый метод шифрования, который позволял кодировать различные файлы. Объем информации был ограничен 4296 символами или 7089 цифрами.

Первоначально коды использовались в автомобильной промышленности. Они нужны были для быстрого учета информации о производстве и реализации автомобилей.

Декодирование

Code-128

pyzbar

Дополнениеvinograd19Интересна история контрольной цифры. Она возникла эволюционно. Контрольная цифра нужна для того, чтобы избежать неправильного декодирования. Если штрихкод был 1234, а его распознали как 7234, то нужна валидация, которая предупредит замену 1 на 7. Валидация может быть неточная, чтобы хотя бы в 90% невалидные номера определялись заранее. 1-й подход: Давайте просто возьмем сумму. Чтобы в остатке от деления на 10 был 0. Ну то есть первые 12 символов несут информационную нагрузку, а последняя цифры подбирается так, чтобы сумма цифр делилась на 10. Декодируем последовательность, если сумма не делится на десять — значит декодировали с багом и нужно сделать это еще раз. Например, код 1234 — валидный. 1+2+3+4 = 10. Код 1216 — тоже валидный, а вот 1218 — нет. Это позволяет избежать проблем с автоматикой. Однако в момент создания штрихкодов был фоллбек в виде набивания номер на клавишах. И там есть плохой кейс: если поменять порядок следования двух цифр, то контрольная сумма не меняется, и это плохо. То есть если штрихкод 1234 был вбит как 2134, контрольная сумма сойдется, а вот номер мы вбили неправильный. Оказывается, неправильный порядок цифр — это распространенный кейс, если стучать по клавишам быстро. 2-й подход. Хорошо, давайте сумму сделаем чуть сложнее. Чтобы цифры на четных местах учитывались дважды. Тогда при изменении порядка, сумма точно не сойдется к нужной. Например код 2364 валидный (2 + 3+3 + 6 + 4+4 = 20), а код 3264 — невалидный (3+ 2+2 + 6 + 4+4 = 19). Но тут оказался еще один плохой пример вбития. Некоторые клавиатуры такие, что десять цифр располагаются в два ряда. первый ряд 12345 и под ним второй второй ряд 67890. Если вместо клавишы «1» нажать правее клавишу «2», то контрольная сумма предупредит неправильный ввод. А вот если вместо клавишу «1» нажать ниже клавишу «6» — то может не предупредить. Ведь 6=1+5, и в случае когда эта цифра стоит на четном месте при вычислении контрольной суммы, мы имеем 2*6 = 2*1 + 2*5. То есть контрольная сумму увеличилась ровно на 10, поэтому ее последняя цифра не изменилась. Например контрольные суммы кодв 2134 и 2634 одинаковые. Та же ошибка будет, если мы вместо 2 нажмем 7, вместо 3 нажмем 8 и тд. 3-й подход. Ок, давайте что ли возьмем опять сумму, только цифры, стоящие на четных местах будем учитывать… трижды. То есть код 1234565 — валидный, потому как 1 + 2*3 + 3 + 4*3 + 5 + 6*3 +5 = 50. Описанный способ стал стандартом вычисления контрольной суммы EAN13 за небольшими правками: число цифр стало фиксированным и равно 13, где 13-ая — это та самая контрольная цифра. Цифры на нечетных местах считаются трижды, на четных — один раз.

Кодирование текста.

По теории ЭВМ любой текст состоит из отдельных символов. К этим символам относятся: буквы, цифры, строчные знаки препинания, специальные символы ( «»,№, (), и т.д.), к ним, так же, относятся пробелы между словами.

Необходимый багаж знаний. Множество символов, при помощи которых записываю текст, называется АЛФАВИТОМ.

Число взятых в алфавите символов, представляет его мощность.

Количество информации можно определить по формуле : N = 2b

Где:

  • N – та самая мощность ( множество символов),
  • b – Бит ( вес взятого символа).

Алфавит, в котором будет 256 может вместить в себя практически все нужные символы. Такие алфавиты называют ДОСТАТОЧНЫМИ.

Если взять алфавит мощностью 256, и иметь в виду что 256 = 28

  • 8 бит всегда называют 1 байт:
  • 1 байт = 8 бит.

Если перевести каждый символ в двоичный код, то этот код компьютерного текста будет занимать 1 байт.

«Кодирование и декодирование информации»

Код ОГЭ: 1.2.2 Кодирование и декодирование информации.

Кодирование информации

■ Кодирование информации — процесс преобразования сигнала из формы, удобной для непосредственного использования информации, в форму, удобную для передачи, хранения или автоматической переработки.


В процессах восприятия, передачи и хранения информации живыми организмами, человеком и техническими устройствами происходит кодирование информации. В этом случае информация, представленная в одной знаковой системе, преобразуется в другую. Каждый символ исходного алфавита представляется конечной последовательностью символов кодового алфавита. Эта результирующая последовательность называется информационным кодом (кодовым словом, или просто кодом).

Примерами кодов являются последовательность букв в тексте, цифр в числе, двоичный компьютерный код и др.

Код состоит из определенного количества знаков (имеет определенную длину), которое называется длиной кода. Например, текстовое сообщение состоит из определенного количества букв, число — из определенного количества цифр.

Преобразование знаков или групп знаков одной знаковой системы в знаки или группы знаков другой знаковой системы называется перекодированием.

При кодировании один символ исходного сообщения может заменяться одним или несколькими символами нового кода, и наоборот — несколько символов исходного сообщения могут быть заменены одним символом в новом коде. Примером такой замены служат китайские иероглифы, которые обозначают целые слова и понятия.

Кодирование может быть равномерным и неравномерным. При равномерном кодировании все символы заменяются кодами равной длины; при неравномерном кодировании разные символы могут кодироваться кодами разной длины (это затрудняет декодирование). Неравномерный код называют еще кодом переменной длины.

Примером неравномерного кодирования является код азбуки Морзе. Длительное время он использовался для передачи сообщений по телеграфу. Кодовый алфавит включал точку, тире и паузу. При передаче по телеграфу точка означала кратковременный сигнал, тире — сигнал в 3 раза длиннее. Между сигналами букв одного слова делалась пауза длительностью одной точки, между словами — длительностью трех точек, между предложениями — длительностью семи точек.

Вначале код Морзе был создан для букв английского алфавита, цифр и знаков препинания. Принцип этого кода заключался в том, что часто встречающиеся буквы кодировались более простыми сочетаниями точек и тире. Это делало код компактным. Позже код был разработан и для символов других алфавитов, включая русский.

Коды Морзе для некоторых букв.

Чтобы избежать неоднозначности, код Морзе включает также паузы между кодами разных символов.

Декодирование информации

■ Декодирование — обратный процесс восстановления информации из закодированного представления.

В зависимости от системы кодирования информационный код может или не может быть декодирован однозначно. Равномерные коды всегда могут быть декодированы однозначно.

Для однозначного декодирования неравномерного кода важно, имеются ли в нем кодовые слова, которые являются одновременно началом других, более длинных кодовых слов. Закодированное сообщение можно однозначно декодировать с начала, если выполняется условие Фано: никакое кодовое слово не является началом другого кодового слова

Закодированное сообщение можно однозначно декодировать с начала, если выполняется условие Фано: никакое кодовое слово не является началом другого кодового слова.

Закодированное сообщение можно однозначно декодировать с конца, если выполняется обратное условие Фано: никакое кодовое слово не является окончанием другого кодового слова.

Неравномерные коды, для которых выполняется условие Фано, называются префиксными. Префиксный код — такой неравномерный код, в котором ни одно кодовое слово не является началом другого, более длинного слова. В таком случае кодовые слова можно записывать друг за другом без разделительного символа между ними.

Например, код Морзе не является префиксным — для него не выполняется условие Фано. Поэтому в кодовый алфавит Морзе, кроме точки и тире, входит также символ–разделитель — пауза длиной в тире. Без разделителя однозначно декодировать код Морзе в общем случае нельзя.

Конспект урока по информатике «Кодирование и декодирование информации».

Вернуться к Списку конспектов по информатике.

Растровое изображение

Графическая информация, представленная в виде рисунков, фотографий, слайдов, подвижных изображений (анимация, видео), схем, чертежей, может создаваться и редактироваться с помощью компьютера, при этом она соответствующим образом кодируется. В настоящее время существует достаточно большое количество прикладных программ для обработки графической информации, но все они реализуют три вида компьютерной графики: растровую, векторную и фрактальную. Мы рассмотрим самую распространенный, растровый формат кодирования изображения.


Графические данные на мониторе представляются в качестве растрового изображения. Если более пристально рассмотреть графическое изображение на экране монитора компьютера, то можно увидеть большое количество разноцветных точек (пикселов – от англ. pixel, образованного от picture element – элемент изображения), которые, будучи собраны вместе, и образуют данное графическое изображение. Каждому пикселю присвоен особый код, в котором хранится информация об оттенке пикселя. Из этого можно сделать вывод: графическое изображение в компьютере определенным образом кодируется и должно быть представлено в виде графического файла.

Файлы, созданные на основе растровой графики, предполагают хранение данных о каждой отдельной точке изображения. Для отображения растровой графики не требуется сложных математических расчетов, достаточно лишь получить данные о каждой точке изображения (ее координаты и цвет) и отобразить их на экране монитора компьютера.

Что делать, если рисунок цветной? Формирование цветного изображения на мониторе осуществляется путём смешивания 3-х основных цветов: синего, красного и зелёного. В этом случае для кодирования цвета пикселя уже не обойтись одним битом. В системе кодирования цветных изображений RGB (R — красный, G — зеленый и B — синий) яркость каждой цветовой составляющей (или, как говорят, каждого канала) кодируется целым числом от 0 до 255. При этом код цвета — это тройка чисел (R,G,B), яркости отдельных каналов. Цвет (0,0,0) — это черный цвет, а (255,255,255) — белый. Если все составляющие имеют равную яркость, получаются оттенки серого цвета, от черного до белого. При кодировании цвета на веб-страницах также используется модель RGB, но яркости каналов записываются в шестнадцатеричной системе счисления (от 0016 до FF16), а перед кодом цвета ставится знак #. Например, код красного цвета записывается как #FF0000, а код синего — как #0000FF.

Всего есть по 256 вариантов яркости каждого из трех цветов. Это позволяет закодировать 2563= 16 777 216 оттенков, что более чем достаточно для человека. Так как 256 = 28, каждая из трех составляющих занимает в памяти 8 бит или 1 байт, а вся информация о каком-то цвете — 24 бита (или 3 байта). Эта величина называется глубиной цвета.

Машинная инструкция

Основная статья: Инструкция (информатика)

Каждая машинная инструкция выполняет определённое действие, такое как операция с данными (например, сложение или копирование машинного слова в регистре или в памяти) или переход к другому участку кода (изменение порядка исполнения; при этом переход может быть безусловным или условным, зависящим от результатов предыдущих инструкций). Любая исполнимая программа состоит из последовательности таких атомарных машинных операций.

Операции, записываемые в виде одной машинной инструкции, можно разделить на «простые» (элементарные операции) и «сложные». Кроме того, большинство современных процессоров состоит из отдельных «исполнительных устройств» — вычислительных блоков, которые умеют исполнять лишь ограниченный набор простейших операций. При исполнении очередной инструкции специальный блок процессора — декодер — транслирует (декодирует) её в последовательность элементарных операций, понимаемых конкретными исполнительными устройствами.

Архитектура набора команд процессора определяет, какие операции он способен выполнять, и какой машинной инструкции какие числовые коды операций (опкоды) соответствуют. Опкоды бывают постоянной длины (у RISC-, MISC-архитектур) и диапазонной (у CISC-архитектур; например: для архитектуры x86 команда имеет длину от 8 до 120 битов).

Современные суперскалярные процессоры способны выполнять несколько машинных инструкций за один такт.

Применение QR-кодов в современности

Сейчас QR-коды стали массовым продуктом. Они используются не только в автопроме, а во всех существующих отраслях.

Сложно представить торговлю без компактных кодов, в которых хранится информация о товарах. Они применяются в обычных магазинах и онлайн-площадках. QR-код обеспечивает безопасность и легкость хранения данных.

В квадрате на чеке часто зашифровывается информация об акциях, покупках, скидках.

В кодах на упаковке товара могут храниться сведения о составе продукта, его производителе.

Оплата по QR-коду квитанции ЖКХ

Посетители музеев и выставок могут получить больше данных об экспонатах, просканировав код, размещенный на табличке.

В туризме QR-коды используются при покупке и проверке билетов, для подтверждения подлинности документов.

Абсолютный и позиционно-независимый код

Абсолютный код (англ. absolute code) — программный код, пригодный для прямого выполнения процессором, то есть код, не требующий дополнительной обработки (например, разрешения ссылок между различными частями кода или привязки к адресам в памяти, обычно выполняемой загрузчиком программ). Примерами абсолютного кода являются исполнимые файлы в формате .COM и загрузчик ОС, располагаемый в MBR. Часто абсолютный код понимается в более узком смысле как позиционно-зависимый код (то есть код, привязанный к определённым адресам памяти).

Позиционно-независимый код (англ. position-independent code) — программа, которая может быть размещена в любой области памяти, так как все ссылки на ячейки памяти в ней относительные (например, относительно счётчика команд). Такую программу можно переместить в другую область памяти в любой момент, в отличие от перемещаемой программы, которая хотя и может быть загружена в любую область памяти, но после загрузки должна оставаться на том же месте.

Возможность создания позиционно-независимого кода зависит от архитектуры и системы команд целевой платформы. Например, если во всех инструкциях перехода в системе команд должны указываться абсолютные адреса, то код, требующий переходов, практически невозможно сделать позиционно-независимым. В архитектуре x86 непосредственная адресация в инструкциях работы с данными представлена только абсолютными адресами, но поскольку адреса данных считаются относительно сегментного регистра, который можно поменять в любой момент, это позволяет создавать позиционно-независимый код со своими ячейками памяти для данных. Кроме того, некоторые ограничения набора команд могут сниматься с помощью самомодифицирующегося кода или нетривиальных последовательностей инструкций.

Кодирование графики

Кодирование текстовой и графической информации имеет некоторые схожие моменты. Как известно, для вывода графической информации используется периферийное устройство компьютера под названием “монитор”. Графика сейчас (речь идет сейчас именно о компьютерной графике) широко используется в самых разных сферах. Благо, аппаратные возможности персональных компьютеров позволяют решать достаточно сложные графические задачи.

Обрабатывать видеоинформацию стало возможным в последние годы. Но текст при этом значительно “легче” графики, что, в принципе, понятно. Из-за этого конечный размер файлов графики необходимо увеличивать. Преодолеть подобные проблемы можно, зная суть, в которой представляется графическая информация.

Давайте для начала разберемся, на какие группы подразделяется данный вид информации. Во-первых, это растровая. Во-вторых, векторная.

Растровые изображения достаточно схожи с клетчатой бумагой. Каждая клетка на такой бумаге закрашивается тем или иным цветом. Такой принцип чем-то напоминает мозаику. То есть получается, что в растровой графике изображение разбивается на отдельные элементарные части. Их именуют пикселями. В переводе на русский язык пиксели обозначают “точки”. Логично, что пиксели упорядочены относительно строк. Графическая сетка состоит как раз из определенного количества пикселей. Ее также называют растром

Принимая во внимание эти два определения, можно сказать, что растровое изображение является не чем иным, как набором пикселей, которые отображаются на сетке прямоугольного типа

Растр монитора и размер пикселя влияют на качество изображения. Оно будет тем выше, чем больше растр у монитора. Размеры растра — это разрешение экрана, о котором наверняка слышал каждый пользователь. Одной из наиболее важных характеристик, которые имеют экраны компьютера, является разрешающая способность, а не только разрешение. Оно показывает, сколько пикселей приходится на ту или иную единицу длины. Обычно разрешающая способность монитора измеряется в пикселях на дюйм. Чем больше пикселей будет приходиться на единицу длины, тем выше будет качество, поскольку “зернистость” при этом снижается.


С этим читают