Несколько подводных камней статической типизации в python

Как производить математические вычисления при помощи списков Python

Зачастую мы используем списки только для хранения в них информации, но мы также можем и производить с их помощью математические вычисления. В данном разделе мы постараемся ответить на наиболее распространенные вопросы на эту тему.


Как вычислить средневзвешенное значение списка

Средневзвешенное значение весьма похоже на среднее значение, но все же не совсем. Средневзвешенное значение зависит не только от значений переменных, но и от их весов.

Данное определение может показаться несколько туманным, поэтому его лучше разобрать на конкретном примере. Допустим, у нас есть два списка.

Тогда мы при помощи следующего кода можем легко вычислить средневзвешенное значение:

for c in range(len(cost)):
   cost = (cost * cases / sum(cases))
cost = sum(cost)
print(cost)

Результат:

Но есть и другие способы это сделать. Например, следующий:

sum(cost * cases / sum(cases) for c in range(len(cost)))

Или вот такой вариант:

sum(cost * cases for c in range(len(cost))) / sum(cases)

И наконец, мы можем вычислить средневзвешенное значение с помощью функции .

Для этого мы сначала создадим переменную  , в которую сохраним результат выполнения функции zip(), аргументами которой будут списки  и . В результате мы увидим список, состоящий только из кортежей. Первое значение каждого из кортежей будет из списка , что соответствует цене, а второе — из списка , что обозначает количество покупок по данной цене.

# Вот что функция `zip()` делает со списками
print(list(zip(cost, cases)))
# Вычисляем средневзвешенное значение
print(sum() / sum(cases))

Не забыли, что функция  делает с вашими списками? Она буквально поэлементно связывает их вместе в один список, состоящий из кортежей. Например, выражение  даст следующий результат:

Как посчитать квантиль

Квантили, наряду с максимумами и минимумами, используются для составления сводного анализа данных. Также выделяют 25%, 50% и 75% квантили (процентили), их еще называют 1, 2 и 3 квартиль соответственно.

Таким образом, вам необходимо вычислить минимум пять чисел, чтобы составить краткую справку по вашим данным. А именно: минимум, максимум, медиана и два квартиля.

Минимум и максимум найти несложно, но что насчет квартилей?

Это также просто. Допустим, у нас есть набор данных, состоящий из 25 наблюдений, отсортированный от минимума к максимуму.

  • 25% процентиль или, иначе говоря, первый квартиль, вычисляется посредством умножения  на . В результате получаем , при округлении в большую сторону . Это дает нам номер нашего наблюдения, который и будет искомым квартилем.
  • Тритий квартиль, он же 75% процентиль мы вычисляем, умножая  на . В результате получаем , что при округлении дает . Таким образом, мы получаем 19 элемент нашего списка, который и будет искомой величиной.
  • Медианное значение вычисляется при помощи умножения  на . После округления им будет 13 элемент нашего списка.

Но как это оформить в виде программы?

Самый простой способ — использовать NumPy. Вот пример вычисления медианного значения (он же 50% процентиль или второй квартиль):

# Импортируем библиотеку NumPy
import numpy as np
# Создаем массив
a = np.array()
# Вычисляем 50% процентиль нашего NumPy-массива
p = np.percentile(a, 50)
# Выводим результат
print(p)

Результат:

Как поэлементно суммировать списки

Допустим, у нас есть два списка:

И мы хотим получить в результате список, состоящий из сумм соответствующих элементов этих списков. Есть несколько способов это сделать.

При помощи базового Python

from operator import add
list(map(add, list1, list2))

В результате получаем следующий список: .

Или мы можем использовать представление списков вместе с функцией .

При помощи NumPy

Предыдущие примеры отлично работают с небольшими списками, но когда вы работаете с большими данными, лучше использовать NumPy.

Вам нужно будет импортировать библиотеку NumPy и конвертировать ваши списки в массивы NumPy.

# Импортируем библиотеку NumPy
import numpy as np
# Преобразуем списки в массивы NumPy 
vector1 = np.array()
vector2 = np.array()
# Поэлементно их суммируем
sum_vector = vector1 + vector2 
# Выводим результат
print(sum_vector)

Python NumPy

NumPy IntroNumPy Getting StartedNumPy Creating ArraysNumPy Array IndexingNumPy Array SlicingNumPy Data TypesNumPy Copy vs ViewNumPy Array ShapeNumPy Array ReshapeNumPy Array IteratingNumPy Array JoinNumPy Array SplitNumPy Array SearchNumPy Array SortNumPy Array FilterNumPy Random Random Intro Data Distribution Random Permutation Seaborn Module Normal Distribution Binomial Distribution Poisson Distribution Uniform Distribution Logistic Distribution Multinomial Distribution Exponential Distribution Chi Square Distribution Rayleigh Distribution Pareto Distribution Zipf Distribution

NumPy ufunc ufunc Intro ufunc Create Function ufunc Simple Arithmetic ufunc Rounding Decimals ufunc Logs ufunc Summations ufunc Products ufunc Differences ufunc Finding LCM ufunc Finding GCD ufunc Trigonometric ufunc Hyperbolic ufunc Set Operations

Python NumPy

NumPy IntroNumPy Getting StartedNumPy Creating ArraysNumPy Array IndexingNumPy Array SlicingNumPy Data TypesNumPy Copy vs ViewNumPy Array ShapeNumPy Array ReshapeNumPy Array IteratingNumPy Array JoinNumPy Array SplitNumPy Array SearchNumPy Array SortNumPy Array FilterNumPy Random Random Intro Data Distribution Random Permutation Seaborn Module Normal Distribution Binomial Distribution Poisson Distribution Uniform Distribution Logistic Distribution Multinomial Distribution Exponential Distribution Chi Square Distribution Rayleigh Distribution Pareto Distribution Zipf Distribution

NumPy ufunc ufunc Intro ufunc Create Function ufunc Simple Arithmetic ufunc Rounding Decimals ufunc Logs ufunc Summations ufunc Products ufunc Differences ufunc Finding LCM ufunc Finding GCD ufunc Trigonometric ufunc Hyperbolic ufunc Set Operations

The Py_BuildValue Function

Here is the standard signature for Py_BuildValue function −

PyObject* Py_BuildValue(char* format,...)

Here format is a C string that describes the Python object to build. The following arguments of Py_BuildValue are C values from which the result is built. The PyObject* result is a new reference.

Following table lists the commonly used code strings, of which zero or more are joined into string format.

Code C type Meaning
c char A C char becomes a Python string of length 1.
d double A C double becomes a Python float.
f float A C float becomes a Python float.
i int A C int becomes a Python int.
l long A C long becomes a Python int.
N PyObject* Passes a Python object and steals a reference.
O PyObject* Passes a Python object and INCREFs it as normal.
O& convert+void* Arbitrary conversion
s char* C 0-terminated char* to Python string, or NULL to None.
s# char*+int C char* and length to Python string, or NULL to None.
u Py_UNICODE* C-wide, null-terminated string to Python Unicode, or NULL to None.
u# Py_UNICODE*+int C-wide string and length to Python Unicode, or NULL to None.
w# char*+int Read/write single-segment buffer to C address and length.
z char* Like s, also accepts None (sets C char* to NULL).
z# char*+int Like s#, also accepts None (sets C char* to NULL).
(…) as per … Builds Python tuple from C values.
as per … Builds Python list from C values.
{…} as per … Builds Python dictionary from C values, alternating keys and values.

Code {…} builds dictionaries from an even number of C values, alternately keys and values. For example, Py_BuildValue(«{issi}»,23,»zig»,»zag»,42) returns a dictionary like Python’s {23:’zig’,’zag’:42}.

Previous Page Print Page

Next Page  

Python NumPy

NumPy IntroNumPy Getting StartedNumPy Creating ArraysNumPy Array IndexingNumPy Array SlicingNumPy Data TypesNumPy Copy vs ViewNumPy Array ShapeNumPy Array ReshapeNumPy Array IteratingNumPy Array JoinNumPy Array SplitNumPy Array SearchNumPy Array SortNumPy Array FilterNumPy Random Random Intro Data Distribution Random Permutation Seaborn Module Normal Distribution Binomial Distribution Poisson Distribution Uniform Distribution Logistic Distribution Multinomial Distribution Exponential Distribution Chi Square Distribution Rayleigh Distribution Pareto Distribution Zipf Distribution

NumPy ufunc ufunc Intro ufunc Create Function ufunc Simple Arithmetic ufunc Rounding Decimals ufunc Logs ufunc Summations ufunc Products ufunc Differences ufunc Finding LCM ufunc Finding GCD ufunc Trigonometric ufunc Hyperbolic ufunc Set Operations

7. Как производить математические вычисления при помощи списков Python


Зачастую мы используем списки только для хранения в них информации, но мы также можем и производить с их помощью математические вычисления. В данном разделе мы постараемся ответить на наиболее распространенные вопросы на эту тему.

Как вычислить средневзвешенное значение списка

Средневзвешенное значение весьма похоже на среднее значение, но все же не совсем. Средневзвешенное значение зависит не только от значений переменных, но и от их весов.

Данное определение может показаться несколько туманным, поэтому его лучше разобрать на конкретном примере. Допустим, у нас есть два списка.

Тогда мы при помощи следующего кода можем легко вычислить средневзвешенное значение:

for c in range(len(cost)):
   cost = (cost * cases / sum(cases))
cost = sum(cost)
print(cost)

Результат:

Но есть и другие способы это сделать. Например, следующий:

sum(cost * cases / sum(cases) for c in range(len(cost)))

Или вот такой вариант:

sum(cost * cases for c in range(len(cost))) / sum(cases)

И наконец, мы можем вычислить средневзвешенное значение с помощью функции .

Для этого мы сначала создадим переменную  , в которую сохраним результат выполнения функции zip(), аргументами которой будут списки  и . В результате мы увидим список, состоящий только из кортежей. Первое значение каждого из кортежей будет из списка , что соответствует цене, а второе — из списка , что обозначает количество покупок по данной цене.

# Вот что функция `zip()` делает со списками
print(list(zip(cost, cases)))

# Вычисляем средневзвешенное значение
print(sum() / sum(cases))

Не забыли, что функция делает с вашими списками? Она буквально поэлементно связывает их вместе в один список, состоящий из кортежей. Например, выражение даст следующий результат:

Как посчитать квантиль

Квантили, наряду с максимумами и минимумами, используются для составления сводного анализа данных. Также выделяют 25%, 50% и 75% квантили (процентили), их еще называют 1, 2 и 3 квартиль соответственно.

Таким образом, вам необходимо вычислить минимум пять чисел, чтобы составить краткую справку по вашим данным. А именно: минимум, максимум, медиана и два квартиля.

Минимум и максимум найти несложно, но что насчет квартилей?

Это также просто. Допустим, у нас есть набор данных, состоящий из 25 наблюдений, отсортированный от минимума к максимуму.

  • 25% процентиль или, иначе говоря, первый квартиль, вычисляется посредством умножения на . В результате получаем , при округлении в большую сторону . Это дает нам номер нашего наблюдения, который и будет искомым квартилем.
  • Тритий квартиль, он же 75% процентиль мы вычисляем, умножая на . В результате получаем , что при округлении дает . Таким образом, мы получаем 19 элемент нашего списка, который и будет искомой величиной.
  • Медианное значение вычисляется при помощи умножения на . После округления им будет 13 элемент нашего списка.

Но как это оформить в виде программы?

Самый простой способ — использовать NumPy. Вот пример вычисления медианного значения (он же 50% процентиль или второй квартиль):

# Импортируем библиотеку NumPy
import numpy as np

# Создаем массив
a = np.array()

# Вычисляем 50% процентиль нашего NumPy-массива
p = np.percentile(a, 50)

# Выводим результат
print(p)

Результат:

Как поэлементно суммировать списки

Допустим, у нас есть два списка:

И мы хотим получить в результате список, состоящий из сумм соответствующих элементов этих списков. Есть несколько способов это сделать.

При помощи базового Python

from operator import add
list(map(add, list1, list2))

В результате получаем следующий список: .

Или мы можем использовать представление списков вместе с функцией .

При помощи NumPy

Предыдущие примеры отлично работают с небольшими списками, но когда вы работаете с большими данными, лучше использовать NumPy.

Вам нужно будет импортировать библиотеку NumPy и конвертировать ваши списки в массивы NumPy.

# Импортируем библиотеку NumPy
import numpy as np

# Преобразуем списки в массивы NumPy 
vector1 = np.array()
vector2 = np.array()

# Поэлементно их суммируем
sum_vector = vector1 + vector2 

# Выводим результат
print(sum_vector)

Проходите тест по Python и поймите, готовы ли вы идти на курсы

Python NumPy

NumPy IntroNumPy Getting StartedNumPy Creating ArraysNumPy Array IndexingNumPy Array SlicingNumPy Data TypesNumPy Copy vs ViewNumPy Array ShapeNumPy Array ReshapeNumPy Array IteratingNumPy Array JoinNumPy Array SplitNumPy Array SearchNumPy Array SortNumPy Array FilterNumPy Random Random Intro Data Distribution Random Permutation Seaborn Module Normal Distribution Binomial Distribution Poisson Distribution Uniform Distribution Logistic Distribution Multinomial Distribution Exponential Distribution Chi Square Distribution Rayleigh Distribution Pareto Distribution Zipf Distribution

NumPy ufunc ufunc Intro ufunc Create Function ufunc Simple Arithmetic ufunc Rounding Decimals ufunc Logs ufunc Summations ufunc Products ufunc Differences ufunc Finding LCM ufunc Finding GCD ufunc Trigonometric ufunc Hyperbolic ufunc Set Operations

Python NumPy

NumPy IntroNumPy Getting StartedNumPy Creating ArraysNumPy Array IndexingNumPy Array SlicingNumPy Data TypesNumPy Copy vs ViewNumPy Array ShapeNumPy Array ReshapeNumPy Array IteratingNumPy Array JoinNumPy Array SplitNumPy Array SearchNumPy Array SortNumPy Array FilterNumPy Random Random Intro Data Distribution Random Permutation Seaborn Module Normal Distribution Binomial Distribution Poisson Distribution Uniform Distribution Logistic Distribution Multinomial Distribution Exponential Distribution Chi Square Distribution Rayleigh Distribution Pareto Distribution Zipf Distribution

NumPy ufunc ufunc Intro ufunc Create Function ufunc Simple Arithmetic ufunc Rounding Decimals ufunc Logs ufunc Summations ufunc Products ufunc Differences ufunc Finding LCM ufunc Finding GCD ufunc Trigonometric ufunc Hyperbolic ufunc Set Operations

Python NumPy

NumPy IntroNumPy Getting StartedNumPy Creating ArraysNumPy Array IndexingNumPy Array SlicingNumPy Data TypesNumPy Copy vs ViewNumPy Array ShapeNumPy Array ReshapeNumPy Array IteratingNumPy Array JoinNumPy Array SplitNumPy Array SearchNumPy Array SortNumPy Array FilterNumPy Random Random Intro Data Distribution Random Permutation Seaborn Module Normal Distribution Binomial Distribution Poisson Distribution Uniform Distribution Logistic Distribution Multinomial Distribution Exponential Distribution Chi Square Distribution Rayleigh Distribution Pareto Distribution Zipf Distribution

NumPy ufunc ufunc Intro ufunc Create Function ufunc Simple Arithmetic ufunc Rounding Decimals ufunc Logs ufunc Summations ufunc Products ufunc Differences ufunc Finding LCM ufunc Finding GCD ufunc Trigonometric ufunc Hyperbolic ufunc Set Operations

Remove Item

To remove an item in a set, use the , or the method.

Remove «banana» by using the method:

thisset = {«apple», «banana», «cherry»} thisset.remove(«banana») print(thisset)

Note: If the item to remove does not exist, will raise an error.

Remove «banana» by using the method:

thisset = {«apple», «banana», «cherry»} thisset.discard(«banana») print(thisset)

Note: If the item to remove does not exist, will NOT raise an error.

You can also use the , method to remove an item, but this method will remove the last item. Remember that sets are unordered, so you will not know what item that gets removed.

The return value of the method is the removed item.

Remove the last item by using the method:


thisset = {«apple», «banana», «cherry»} x = thisset.pop()print(x) print(thisset)

Note: Sets are unordered, so when using the method, you will not know which item that gets removed.

The method empties the set:

thisset = {«apple», «banana», «cherry»} thisset.clear() print(thisset)

Как лучше выбирать элементы из списка?

Если вы хотите продуктивно работать со списками, то должны уметь получать доступ к данным, хранящимся в них.

Обычно мы получаем доступ к элементам списков, чтобы изменять определенные значения, обновлять или удалять их, или выполнять какие-либо другие операции с ними. Мы получаем доступ к элементам списков и, собственно, ко всем другим типам последовательностей, при помощи оператора индекса . Внутри него мы помещаем целое число.

# Выбираем первый элемент списка
oneZooAnimal = biggerZoo
# Выводим на экран переменную `oneZooAnimal`
print(oneZooAnimal)

Запустите данный код и убедитесь, что вы получите первый элемент списка, сохраненного в переменную . Это может быть поначалу несколько непривычно, но нумерация начинается с числа , а не .

Как получить последний элемент списка?

Ответ на этот вопрос является дополнением к объяснению в предыдущем разделе.

Попробуйте ввести отрицательное значение, например,  или , в оператор индекса, чтобы получить последние элементы нашего списка !

# Вставляем -1 
monkeys = biggerZoo
print(monkeys)
# А теперь -2
zebra = biggerZoo
print(zebra)

Не правда ли, не слишком сложно?

Что означает ошибка «Index Out Of Range»?

Эта ошибка одна из тех, которые вы будете видеть достаточно часто, особенно если вы новичок в программировании.

Лучший способ понять эту ошибку — попробовать ее получить самостоятельно.

Возьмите ваш список и передайте в оператор индекса либо очень маленькое отрицательное число, либо очень большое положительное число.

Как видите, вы можете получить ошибку «Индекс вне диапазона» в случаях, когда вы передаете в оператор индекса целочисленное значение, не попадающее в диапазон значений индекса списка. Это означает, что вы присваиваете значение или ссылаетесь на (пока) несуществующий индекс.

Срезы в списках

Если вы новичок в программировании и в Python, этот вопрос может показаться одним из наиболее запутанных.

Обычно нотация срезов используется, когда мы хотим выбрать более одного элемента списка одновременно. Как и при выборе одного элемента из списка, мы используем двойные скобки. Отличие же состоит в том, что теперь мы еще используем внутри скобок двоеточие. Это выглядит следующим образом:

# Используем нотацию срезов
someZooAnimals = biggerZoo
# Выводим на экран то, что мы выбрали
print(someZooAnimals)
# Теперь поменяем местами 2 и двоеточие
otherZooAnimals = biggerZoo
# Выводим на экран полученный результат
print(otherZooAnimals)

Вы можете видеть, что в первом случае мы выводим на экран список  начиная с его элемента , который имеет индекс . Иными словами, мы начинаем с индекса  и идем до конца списка, так как другой индекс не указан.

Что же происходит во втором случае, когда мы поменяли местами индекс  и двоеточие? Вы можете видеть, что мы получаем список из двух элементов, и . В данном случае мы стартуем с индекса  и доходим до индекса  (не включая его). Как вы можете видеть, результат не будет включать элемент .

В общем, подводя итоги:

# элементы берутся от start до end (но элемент под номером end не входит в диапазон!)
a
# элементы берутся начиная со start и до конца
a    
# элементы берутся с начала до end (но элемент под номером end не входит в диапазон!)
a

Совет: передавая в оператор индекса только двоеточие, мы создаем копию списка.

В дополнение к простой нотации срезов, мы еще можем задать значение шага, с которым будут выбираться значения. В обобщенном виде нотация будет иметь следующий вид:

# Начиная со start, не доходя до end, с шагом step
a

Так что же по сути дает значение шага?

Ну, это позволяет вам буквально шагать по списку и выбирать только те элементы, которые включает в себя значение вашего шага. Вот пример:

Обратите внимание, что если вы не указали какое-либо значение шага, оно будет просто установлено в значение . При проходе по списку ни один элемент пропущен не будет

Также всегда помните, что ваш результат не включает индекс конечного значения, который вы указали в записи среза!

Как случайным образом выбрать элемент из списка?

Для этого мы используем пакет .

# Импортируем функцию `choice` из библиотеки `random` 
from random import choice
# Создадим список из первых четырех букв алфавита
list = 
# Выведем на экран случайный элемент списка
print(choice(list))

Если мы хотим выбрать случайный элемент из списка по индексу, то можем использовать метод  из той же библиотеки .

# Импортируем функцию `randrange` из библиотеки `random`
from random import randrange
# Создадим список из первых четырех букв алфавита
randomLetters = 
# Выбираем случайный индекс нашего списка
randomIndex = randrange(0,len(randomLetters))
# Выводим случайный элемент на экран
print(randomLetters)

Совет: обратите внимание на библиотеку , она может вам пригодиться во многих случаях при программировании на Python

Что такое списки в Python?

Списки, наряду со словарями, кортежами и множествами, это одна из четырех встроенных в Python структур данных. Списки используются для хранения упорядоченных коллекций элементов. Сами элементы при этом могут быть разных типов, но, как правило, все же имеют один и тот же тип. Эти элементы помещены в квадратные скобки и разделены запятыми. Вот пример таких списков:

# Здесь все элементы одного типа
zoo = 
print(zoo)
# А здесь - нет
biggerZoo = ]
print(biggerZoo)

Можно заметить, что список, хранящийся во второй переменной , похож на список из первой переменной , первые четыре элемента совпадают. Но он также содержит в себе список с названиями обезьян.

Поскольку списки в Python хранят упорядоченные коллекции элементов или объектов, мы можем сказать, что они относятся к последовательностям и имеют все признаки и поведение таковых. Типами последовательностей также считаются строки и кортежи.

Вы можете спросить, что такого особенного в типах последовательностей. Ну, попросту говоря, это означает, что программа может их перебирать! Вот почему списки, строки, кортежи и множества часто называют «итерирующими последовательностями».


Имейте в виду, что эта концепция очень важна. Вы можете увидеть ее использование и в других языках программирования, которые применяются в работе с данными, например в Scala!

Теперь давайте перейдем к делу и углубимся в исследование наиболее интересных вопросов про списки в Python.

Python NumPy

NumPy IntroNumPy Getting StartedNumPy Creating ArraysNumPy Array IndexingNumPy Array SlicingNumPy Data TypesNumPy Copy vs ViewNumPy Array ShapeNumPy Array ReshapeNumPy Array IteratingNumPy Array JoinNumPy Array SplitNumPy Array SearchNumPy Array SortNumPy Array FilterNumPy Random Random Intro Data Distribution Random Permutation Seaborn Module Normal Distribution Binomial Distribution Poisson Distribution Uniform Distribution Logistic Distribution Multinomial Distribution Exponential Distribution Chi Square Distribution Rayleigh Distribution Pareto Distribution Zipf Distribution

NumPy ufunc ufunc Intro ufunc Create Function ufunc Simple Arithmetic ufunc Rounding Decimals ufunc Logs ufunc Summations ufunc Products ufunc Differences ufunc Finding LCM ufunc Finding GCD ufunc Trigonometric ufunc Hyperbolic ufunc Set Operations

Join Two Sets

There are several ways to join two or more sets in Python.

You can use the method that returns a new set containing all items from both sets, or the method that inserts all the items from one set into another:

Example

The method returns a new set with all items from both sets:

set1 = {«a», «b» , «c»}set2 = {1, 2, 3} set3 = set1.union(set2)print(set3)

Example

The method inserts the items in set2 into set1:

set1 = {«a», «b» , «c»}set2 = {1, 2, 3} set1.update(set2)print(set1)

Note: Both and will exclude any duplicate items.

There are other methods that joins two sets and keeps ONLY the duplicates, or NEVER the duplicates, check the full list of set methods in the bottom of this page.

Built-in List Functions & Methods

Python includes the following list functions −

Sr.No. Function with Description
1 cmp(list1, list2)

Compares elements of both lists.

2 len(list)

Gives the total length of the list.

3 max(list)

Returns item from the list with max value.

4 min(list)

Returns item from the list with min value.

5 list(seq)

Converts a tuple into list.

Python includes following list methods

Sr.No. Methods with Description
1 list.append(obj)

Appends object obj to list

2 list.count(obj)

Returns count of how many times obj occurs in list

3 list.extend(seq)

Appends the contents of seq to list

4 list.index(obj)

Returns the lowest index in list that obj appears

5 list.insert(index, obj)

Inserts object obj into list at offset index

6 list.pop(obj=list)

Removes and returns last object or obj from list

7 list.remove(obj)

Removes object obj from list

8 list.reverse()

Reverses objects of list in place

9 list.sort()

Sorts objects of list, use compare func if given

Previous Page Print Page

Next Page  

Python NumPy

NumPy IntroNumPy Getting StartedNumPy Creating ArraysNumPy Array IndexingNumPy Array SlicingNumPy Data TypesNumPy Copy vs ViewNumPy Array ShapeNumPy Array ReshapeNumPy Array IteratingNumPy Array JoinNumPy Array SplitNumPy Array SearchNumPy Array SortNumPy Array FilterNumPy Random Random Intro Data Distribution Random Permutation Seaborn Module Normal Distribution Binomial Distribution Poisson Distribution Uniform Distribution Logistic Distribution Multinomial Distribution Exponential Distribution Chi Square Distribution Rayleigh Distribution Pareto Distribution Zipf Distribution

NumPy ufunc ufunc Intro ufunc Create Function ufunc Simple Arithmetic ufunc Rounding Decimals ufunc Logs ufunc Summations ufunc Products ufunc Differences ufunc Finding LCM ufunc Finding GCD ufunc Trigonometric ufunc Hyperbolic ufunc Set Operations

The PyArg_ParseTuple Function

Here is the standard signature for PyArg_ParseTuple function −

int PyArg_ParseTuple(PyObject* tuple,char* format,...)

This function returns 0 for errors, and a value not equal to 0 for success. tuple is the PyObject* that was the C function’s second argument. Here format is a C string that describes mandatory and optional arguments.

Here is a list of format codes for PyArg_ParseTuple function −

Code C type Meaning
c char A Python string of length 1 becomes a C char.
d double A Python float becomes a C double.
f float A Python float becomes a C float.
i int A Python int becomes a C int.
l long A Python int becomes a C long.
L long long A Python int becomes a C long long
O PyObject* Gets non-NULL borrowed reference to Python argument.
s char* Python string without embedded nulls to C char*.
s# char*+int Any Python string to C address and length.
t# char*+int Read-only single-segment buffer to C address and length.
u Py_UNICODE* Python Unicode without embedded nulls to C.
u# Py_UNICODE*+int Any Python Unicode C address and length.
w# char*+int Read/write single-segment buffer to C address and length.
z char* Like s, also accepts None (sets C char* to NULL).
z# char*+int Like s#, also accepts None (sets C char* to NULL).
(…) as per … A Python sequence is treated as one argument per item.
|   The following arguments are optional.
  Format end, followed by function name for error messages.
;   Format end, followed by entire error message text.

С этим читают